基于距离和适应度综合排序的差异进化算法Differential evolution algorithm based on proximity and fitness comprehensive ranking
曹国刚;曹聪;
摘要(Abstract):
差异进化算法在解决复杂问题时有着独到的优势,其算法也在不断被改进,但大部分改进算法只利用了搜索空间或适应度空间的单一信息。基于距离选择和适应度排序,提出一种改进的变异选择方法,将部分个体的选择通过综合个体间距离和适应度排序信息得到,该方法改变了经典差异进化算法的变异步骤,可以直接融入常用变异策略中。使用CEC 2017超多目标优化竞赛提供的函数集,从邻近组比例和问题维度对算法的性能影响进行分析和实验,结果表明,邻近组比例与变异策略中的扰动个数有关,最优邻近组比例下的改进算法比已有算法具有更好的运算能力,并且问题越复杂优势越明显。
关键词(KeyWords): 差异进化;智能选择;变异操作;距离选择;适应度排序;变异策略;优化算法
基金项目(Foundation): 国家自然科学基金资助项目(41671402);; 上海市联盟计划项目(LM201811);; 上海应用技术大学协同创新基金(XTCX2019-14)
作者(Author): 曹国刚;曹聪;
Email:
DOI: 10.16652/j.issn.1004-373x.2021.07.024
参考文献(References):
- [1] STORN R,PRICE V K. Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization,1997,11(4):341-359.
- [2] NERI F,TIRRONEN V. Recent advances in differential evolution:a survey and experimental analysis[J]. Artificial intelligence review,2010,33(1/2):61-106.
- [3] DAS S,SUGANTHAN P N. Differential evolution:a survey of the state-of-the-art[J]. IEEE transactions on evolution computation,2011,15(1):4-31.
- [4] DRAGOI E N,DAFINESCU V. Parameter control and hybridization techniques in differential evolution:a survey[J]. Artificial intelligence review,2016,45(4):447-470.
- [5] DAS S,MULLICK S S,SUGANTHAN P N. Recent advances in differential evolution:an updated survey[J]. Swarm and evolutionary computation,2016,27:1-30.
- [6] HE Z Y,LI X,YOU X G,et al. Connected component model for multi-object tracking[J]. IEEE transactions on image processing,2016,25(8):3698-3711.
- [7] HE Z Y,YI S Y,CHEUNG Y M. Robust object tracking via key patch sparse representation[J]. IEEE transactions on cybernetics,2017,47(2):354-364.
- [8] PIOTROWSKI A P. Review of differential evolution population size[J]. Swarm and evolutionary computation,2017,32:1-24.
- [9] BISWAS S,KUNDU S,DAS S. An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution[J]. IEEE transactions on cybernetics,2014,44(10):1726-1737.
- [10] GONG W Y,CAI Z H,LIANG D W. Adaptive ranking mutation operator based differential evolution for constrained optimization[J]. IEEE transactions on cybernetics,2015,45(4):716-727.
- [11] KAELO P,ALI M M. A numerical study of some modified differential evolution algorithms[J]. European journal of operational research,2006,169(3):1176-1184.
- [12] EPITROPAKIS M G,TASOULIS D K,PAVLIDIS N G,et al.Enhancing differential evolution utilizing proximity-based mutation operators[J]. IEEE transactions on evolutionary computation,2011,15(1):99-119.
- [13] BAATAR N,ZHANG D H,KOH CHANG-SEOP. An improved differential evolution algorithm adoptingλ-best mutation strategy for global optimization of electromagnetic devices[J]. IEEE transactions on magnetics,2013,49(5):2097-2100.
- [14] GONG W Y,CAI Z H. Differential evolution with rankingbased mutation operators[J]. IEEE transactions on cybernetics,2013,43(6):2066-2081.
- [15] GARCíA-MARTíNEZ C,RODRíGUEZ F J,LOZANO M.Role differentiation and malleable mating for differential evolution:an analysis on large-scale optimization[J]. Soft computing,2011,15(11):2109-2126.
- [16] LIANG J,QU B Y,MAO X B,et al. Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization[J]. Neurocomputing,2014,137:252-260.
- [17] LIANG J,QU B Y,SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization[EB/OL].[2013-12-21]. https://www.researchgate.net/publication/271646935.
- [18] CREPINSEK M,LIU S H,MERNIK M. Exploration and exploitation in evolutionary algorithms:a survey[J]. ACM computing surveys,2013,45(3):1-33.