一种融合IFOA和K-Means聚类的低照度图像分割方法Method of low-light-level image segmentation based on integration of IFOA and K-Means clustering
李苏晨;王硕禾;唐卓;刘旭;
摘要(Abstract):
为改进电气化铁路接触网补偿器监测装置在光照不足时对图像目标区域分割精度较低,无法准确识别入侵异物的问题,采用全局自适应色调映射的方法增强低照度图像,联合改进的果蝇算法与K-Means聚类算法(IFOA-K-Means聚类算法)实现目标区域的准确分割。实验结果表明,该方法对退化图像的分割精度更高,能够充分保持图像的边缘信息,运算开销较小,能有效提高图像后续处理的效率。
关键词(KeyWords): 电气化铁路;图像照度增强;图像分割;色调映射;果蝇算法;K-Means聚类算法;入侵物识别
基金项目(Foundation): 中国铁路总公司科技研究开发计划项目(P2018G006);; 河北省教育厅重点科研项目(ZD2018217);; 石家庄铁道大学创新创业项目(YC2019066)
作者(Author): 李苏晨;王硕禾;唐卓;刘旭;
Email:
DOI: 10.16652/j.issn.1004-373x.2021.01.010
参考文献(References):
- [1] STARK J A. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE transactions on image processing,2014,9(5):889-896.
- [2]李学明.基于Retinex理论的图像增强算法[J].计算机应用研究,2005,22(2):235-237.
- [3]赵文涛,曹昕鸷,田志勇.基于自适应阈值区域生长的红外舰船目标分割方法[J].红外技术,2018,40(2):158-163.
- [4]段锁林,殷聪聪,李大伟.改进的自适应Canny边缘检测算法[J].计算机工程与设计,2018,39(6):1645-1652.
- [5] PREETHA M M S J,SURESH L P,BOSCO M J. Image segmentation using seeded region growing[C]//2012 International Conference on Computing,Electronics and Electrical Technologies(ICCEET).[S.l.:s.n.],2014:576-583.
- [6] LI H Y,HWANG W J,CHANG C Y. Efficient fuzzy C-means architecture for image segmentation[J]. Sensors, 2011, 11(7):6697-6718.
- [7]马英然,彭延军.一种融合曲线演化与模糊C均值聚类算法的快速图像分割模型[J].电子与信息学报,2017,39(6):1379-1386.
- [8] SHEN H,JIN L,ZHU Y L,et al. Hybridization of particle swarm optimization with the K-means algorithm for clustering analysis[C]//IEEE Fifth International Conference on Bio-inspired Computing:Theories&Applications. Changsha:IEEE,2010:531-535.
- [9]盛华,张桂珠.一种融合K-means和快速密度峰值搜索算法的聚类方法[J].计算机应用与软件,2016,33(10):260-264.
- [10] HE Z R,DING S,LI B,et al. An improved particle swarm optimization of support vector machine parameters for hyperspectral image classification[C]//2017 12th IEEE Conference on Industrial Electronics and Applications(ICIEA). Siem Reap:IEEE,2017:499-503.
- [11]刘唐,周炜,李志鹏,等.基于改进磷虾群算法的K-means算法[J].探测与控制学报,2019,41(1):76-81.
- [12]刘颖,王倩,刘卫华.基于亮度自适应分段的高动态图像色调映射算法[J].电视技术,2018,42(1):24-30.
- [13]姚军财,刘贵忠.基于图像内容视觉感知的图像质量客观评价方法[J].物理学报,2018,67(10):241-258.
- [14] HAUT J M,PAOLETTI M,PLAZA J,et al. Cloud implementation of the K-means algorithm for hyper spectral image analysis[J]. Journal of supercomputing,2017,73(1):1-16.
- [15] SHI H S,SAN Y,ZHU Y. An improved fruit fly optimization algorithm and its application[EB/OL].[2015-01-20]. https://www.researchgate.net/publication/300619217.